Offshore wind operational report
January – December 2017
Welcome to our 2017 Offshore Wind Operational Report, an annual publication summarising progress in the development of the UK’s offshore wind resources.

With 36 large offshore wind farms already contributing on average 6% of the nation’s electricity demand, the sector is on track to becoming a vital source of power generation for the country.

As The Crown Estate, we manage the seabed around England, Wales, and Northern Ireland out to international borders. These waters harbour some of the best wind resources worldwide, alongside the infrastructure of ports, transmission grids, a diverse supply chain and a skilled labour force.

This is well illustrated by the Rampion wind farm situated off Brighton. The first Round 3 wind farm to be constructed, it can provide 400 MW of power, enough for 405,000 homes. A new purpose-built operations and maintenance facility located on the East Quay and Newhaven Port will be home to over 60 newly hired apprentices, technicians, engineers and marine workers to service all the offshore assets. The base is helping to kick start a regeneration programme in the area and is part of the Newhaven Enterprise Zone.

Government policy has long recognised offshore wind’s strengths in providing large-scale low-carbon power, creating jobs and opportunities across the country, and its ability to do so in harmony with the natural environment. Further, on the back of the Contracts for Difference auction results last year, this can now be done at historic low costs. These strands are being woven together in an ambitious “sector deal”, part of the government’s industrial strategy, that is designed to drive continued growth in the years ahead.

Sector ambition is to grow operating capacity from 6.9 GW at the end of 2017 to 30 GW in the 2030s. This will make our energy system more reliable and sustainable, lower overall costs, and provides a huge opportunity for all stakeholders involved to have their say in this exciting “energy transition”. To facilitate market demand for new offshore sites we have commenced dialogue with industry and statutory stakeholders to scope a potential new leasing round.1

At the end of 2017, there were 1,762 wind turbines and 21 transformer stations operational on the seabed. These numbers are set to increase by around 50% over the next five years, making it one of the largest infrastructure projects in the country. Driven by its world-leading approach to safety and performance, as witnessed by the G+ and SPARTA projects, the sector is broadening its appeal to a wide range of investors.

Our thanks to all those who have provided content, in particular Paul Cowling and the G+ team, Forewind, PFA, PKA, Sally Shenton and Chris Hill at ORE Catapult.

Hubb den Rooijen
Director of Energy, Minerals and Infrastructure
The Crown Estate

1 Sites that were fully operational and those under construction but already generating at December 2017
2 An independent organisation, Crown Estate Scotland, manages Scottish seaward
Offshore wind farm status

By the end of 2017, there were 33 fully operational offshore wind farms, with a further eight under construction, set to contribute an additional 4.5 GW of new capacity over the coming years.

The resounding theme for 2017 was construction, construction, construction, with it being the UK’s busiest year yet in offshore wind. An amazing 2 GW of new capacity was added to UK offshore wind in 2017, of which 1.8 GW was operational by the end of the year. This contributed significantly to Europe’s overall 3.1 GW increase in new offshore wind capacity installed in 2017. The UK currently has the largest operational capacity of offshore wind installed in Europe providing 43% of the total.

To give an idea of the pace of construction this year, an additional 372 wind turbines were installed between January and December 2017, on average that’s just over one new wind turbine installed every day. This pace is underpinned by a sophisticated supply chain and teams of designers, planners, construction experts, project managers and cable installers. To be able to deliver complex projects at this scale is a major achievement for the UK and its partners.

Figure 3: new European offshore wind capacity delivered in 2017

Figure 4: UK offshore wind project pipeline – 31 December 2017

Operational: Total capacity of wind farms that have been fully commissioned.

<table>
<thead>
<tr>
<th>Capacity MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Barrow</td>
</tr>
<tr>
<td>2 Blyth</td>
</tr>
<tr>
<td>3 Blyth Demonstration (Phase 1)</td>
</tr>
<tr>
<td>4 Burbo Bank</td>
</tr>
<tr>
<td>5 Burbo Bank Extension</td>
</tr>
<tr>
<td>6 Dudgeon</td>
</tr>
<tr>
<td>7 Greater Gabbard</td>
</tr>
<tr>
<td>8 Gunfleet Sands Demonstration</td>
</tr>
<tr>
<td>9 Gunfleet Sands I</td>
</tr>
<tr>
<td>10 Gunfleet Sands II</td>
</tr>
<tr>
<td>11 Gwynt y Mor</td>
</tr>
<tr>
<td>12 Humber Gateway</td>
</tr>
<tr>
<td>13 Hywind 2 Demonstration (Buchan Deep) *</td>
</tr>
<tr>
<td>14 Inner Dowsing</td>
</tr>
<tr>
<td>15 Kentish Flats</td>
</tr>
<tr>
<td>16 Kentish Flats Extension</td>
</tr>
<tr>
<td>17 Levenmouth Demonstration *</td>
</tr>
<tr>
<td>18 Lincs</td>
</tr>
<tr>
<td>19 London Array</td>
</tr>
<tr>
<td>20 Lynn</td>
</tr>
<tr>
<td>21 North Hoyle</td>
</tr>
<tr>
<td>22 Ormonde</td>
</tr>
<tr>
<td>23 Rhyl Flats</td>
</tr>
<tr>
<td>24 Robin Rigg East *</td>
</tr>
<tr>
<td>25 Robin Rigg West *</td>
</tr>
<tr>
<td>26 Scroby Sands</td>
</tr>
<tr>
<td>27 Sheringham Shoal</td>
</tr>
<tr>
<td>28 Teesside</td>
</tr>
<tr>
<td>29 Thanet</td>
</tr>
<tr>
<td>30 Walney 1</td>
</tr>
<tr>
<td>31 Walney 2</td>
</tr>
<tr>
<td>32 West of Duddon Sands</td>
</tr>
<tr>
<td>33 Westermost Rough</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Under construction: Total capacity of wind farms that are under construction or where the developer has confirmed a final investment decision, but are not yet fully operational.

<table>
<thead>
<tr>
<th>Up to capacity MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 European Offshore Wind Deployment Centre *</td>
</tr>
<tr>
<td>35 Beatrice *</td>
</tr>
<tr>
<td>36 East Anglia ONE</td>
</tr>
<tr>
<td>37 Galloper</td>
</tr>
<tr>
<td>38 Hornsea Project 1</td>
</tr>
<tr>
<td>39 Race Bank</td>
</tr>
<tr>
<td>40 Rampion</td>
</tr>
<tr>
<td>41 Walney Extension</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Government support on offer: Total capacity of wind farms that have secured a Contract for Difference.

<table>
<thead>
<tr>
<th>Up to capacity MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Hornsea Project 2</td>
</tr>
<tr>
<td>43 Moray East *</td>
</tr>
<tr>
<td>44 Neart na Gaoithe (NNG) *</td>
</tr>
<tr>
<td>45 Triton Knoll</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

A turbine a day...

In the UK an offshore wind turbine was installed every day on average in 2017
At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind Blyth Demo – Ph1;
• Aberdeen Bay;
• Beatrice;
• Blyth Demo – Ph1;
• Burbo Bank Extension;
• Dudgeon;
• East Anglia ONE;
• Galloper;
• Hornsea Project 1;
• Hywind 2 Demo;
• Race Bank;
• Rampion;
• Walney Extension – Ph1.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.

Construction activity

At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind Blyth Demo – Ph1;
• Aberdeen Bay;
• Beatrice;
• Blyth Demo – Ph1;
• Burbo Bank Extension;
• Dudgeon;
• East Anglia ONE;
• Galloper;
• Hornsea Project 1;
• Hywind 2 Demo;
• Race Bank;
• Rampion;
• Walney Extension – Ph1.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.

Construction activity

At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind Blyth Demo – Ph1;
• Aberdeen Bay;
• Beatrice;
• Blyth Demo – Ph1;
• Burbo Bank Extension;
• Dudgeon;
• East Anglia ONE;
• Galloper;
• Hornsea Project 1;
• Hywind 2 Demo;
• Race Bank;
• Rampion;
• Walney Extension – Ph1.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.

Construction activity

At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind Blyth Demo – Ph1;
• Aberdeen Bay;
• Beatrice;
• Blyth Demo – Ph1;
• Burbo Bank Extension;
• Dudgeon;
• East Anglia ONE;
• Galloper;
• Hornsea Project 1;
• Hywind 2 Demo;
• Race Bank;
• Rampion;
• Walney Extension – Ph1.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.

Construction activity

At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind demonstration project off the Aberdeenshire coast in Scotland; and
• The first five pioneering reinforced concrete gravity-based foundations, an alternative to traditional monopile and jacket solutions, being constructed, transported and installed at the Blyth Offshore Demonstrator project off the coast of Blyth.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.

Construction activity

At the end of December 2017 there were 1,762 fully operational offshore wind turbines on the UK seabed, with a further 1,161 under construction. During the year, seven new wind farms began generating, four of which reached full operation, adding an additional 1.8 GW of new operational capacity.

The UK had a total operational capacity of 6.9 GW, with a further 0.6 GW installed but not yet operational at the end of the year. There were 15 offshore wind farm sites under construction during the year, several of which continue into 2018. The 7 GW milestone has since been reached (February 2018), a significant point which highlights the industry’s progression.

2017 also witnessed some major industry highlights:

• The first 8 MW turbines becoming fully operational were at Burbo Bank Extension;
• The world’s first floating offshore wind farm installed and generating at the Hywind demonstration project off the Aberdeenshire coast in Scotland; and
• The first five pioneering reinforced concrete gravity-based foundations, an alternative to traditional monopile and jacket solutions, being constructed, transported and installed at the Blyth Offshore Demonstrator project off the coast of Blyth.

These examples demonstrate the UK’s place at the forefront of testing new technologies in the offshore wind sector.

2017 also saw the first Round 3 wind farm, Rampion, complete construction and begin generating off the Sussex coast. The growth of offshore wind is set to continue with some of the larger, further offshore wind farms beginning construction and reaching full commercial operation in the coming years, enabling the sector to grow its contribution to the UK’s electricity supply to 10% by 2020.
Performance

Ramp up

During the powering-up phase, turbines are built and commissioned sequentially. The rate at which turbines are brought online can be influenced by meteorological conditions, availability of jack-up vessels, components supply chain, technical difficulties and other factors.

- The first months of construction are usually slow. The first half of a wind farm takes approximately 25% longer to build than the second half.
- Construction in the winter is marginally slower than in the summer. The latitude of the project is a factor to keep in consideration, due to reduced sunlight and harsher weather in the winter.

Once a project has been commissioned and is fully operational, it is usual to see a sub-optimal performance in the first months of operation. However, the industry has become very efficient at ironing out infancy issues and new assets now reach expected performance much sooner than in the past.

This trend is illustrated by the following graphs (Figures 8 and 9), showing the power output of two wind farms from full commissioning onwards.

Wind variability

Wind farm output is dependent on wind speed, dictated by the movement of large air masses. The average output of a wind farm over its lifetime can be accurately calculated using long-term data, but its performance over a short period of time is entirely dependent on local wind conditions.

This illustrates the difference between “weather”, which forecasts the precise meteorological conditions for the following days and “climate” which predicts the average conditions over a much longer period.

Figure 12 shows England & Wales’ offshore portfolio’s monthly energy deviation from the long term average in 2017. The power output in January was 28% lower than the long-term average due to calm weather conditions across the UK. This was compensated in June and October, with generation figures 33% and 23% higher than the long-term average, respectively. These figures are averaged for England and Wales. Regional power output is dependent on local conditions and may differ from the countrywide average.

The annual variability of energy produced as a result of wind deviation from 2011 to 2017 is illustrated in Figure 13. The overall energy deviation at the end of 2017 was 1% above the long-term average. 2015 saw the power output exceed the long-term average by almost 10%, whereas 2016 was 5% below expectations. This is illustrated in the homes supplied graphic above, which shows little incremental change between 2015 and 2016 due to these factors.
There is an enormous amount of offshore wind research and innovation being undertaken in the UK and beyond, but it’s often challenging to grasp all the strands of work and understand how, or if they are joined-up. This table brings together current UK research, initiatives and centres of knowledge. Each entry forms a hyperlink to the relevant website, so that you can find out more. A PDF version of this report, including all the links needed, is available at www.thecrownestate.co.uk.

The Offshore Wind Innovation Hub Roadmaps

The Offshore Wind Innovation Hub (a partnership between the Offshore Renewable Energy Catapult and KTN) has been working with stakeholders from across the offshore wind sector on a series of Innovation Roadmaps for UK Offshore Wind sector, such as a roadmap for operations and maintenance (O&M) and wind farm lifecycle. These roadmaps aim to identify areas for innovation which can help reduce the levelised cost of energy and where the UK is well placed in terms of capability and skills. The roadmaps are now available here: https://roadmaps.offshorewindinnovationhub.com.

<table>
<thead>
<tr>
<th>Turbines</th>
<th>Data Management & Knowledge Sharing</th>
<th>Cables</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>AURA – a multidisciplinary programme of offshore wind innovation & skills development which aims to reduce costs by creating an offshore wind innovation hub that brings together research and development, innovation, industry collaboration and talent development</td>
<td>SPARTA – performance and reliability benchmarking scheme for offshore wind</td>
<td>Carbon Trust Cable Burial Assessment Methodology</td>
<td>Industry</td>
</tr>
<tr>
<td>HOME Project – Holistic Operation and Maintenance for Energy from Offshore Wind Farms. A programme on the use of advanced sensing, robotics, virtual reality models and artificial intelligence to reduce maintenance cost and effort for offshore wind farms</td>
<td>O&M Case Studies (ORE Catapult)</td>
<td>OWPB Export Cable Reliability study</td>
<td>Academia</td>
</tr>
<tr>
<td></td>
<td>O&M Forum</td>
<td>Southampton University Cable Reliability improvement</td>
<td>Industry/academia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Turbine Safety Rules Review Group</td>
<td></td>
</tr>
</tbody>
</table>

Foundations

- Carbon Trust Sub-sea Inspection Competition
- SLIC Structural Life Cycle Industry Collaboration
- Scour Research Liverpool University
- Scour Research Southampton University
- Centre for Doctoral Training (CDT) Renewable Energy Marine Structures – Cranfield & Oxford Universities
- Centre for Doctoral Training (CDT) comprehensive research into Wind & Marine Energy – Strathclyde and Edinburgh Universities

Cables

- Carbon Trust Cable Burial Assessment Methodology
- OWPB Export Cable Reliability study
- Southampton University Cable Reliability improvement

Health & Safety improvement & Standardisation

- GWO/RUK offshore access training
- G+ access procedure
- G+ Good Practice Guidelines
- Renewables UK GREEN (Offshore Renewable Energy Emergency Forum)
- UREC (UK Remote Immediate Emergency Care Advanced) advanced medical training development
- Wind Turbine Safety Rules Review Group

Carbon Trust OWA – Offshore Wind Accelerator

- an industry-led programme of research and innovation for offshore wind projects (noted opposite) contain elements relating to turbine & blade innovation

O&M initiatives and innovation

There is an enormous amount of offshore wind research and innovation being undertaken in the UK and beyond, but it’s often challenging to grasp all the strands of work and understand how, or if they are joined-up. This table brings together current UK research, initiatives and centres of knowledge. Each entry forms a hyperlink to the relevant website, so that you can find out more. A PDF version of this report, including all the links needed, is available at www.thecrownestate.co.uk.

5 years

Offshore wind generation in 2017 would keep the UK national rail network on the move for 5 years!
2017 broke new ground for financing in the sector, with several ‘firsts’ during a very active 2017 (see facing page).

For operating and under-construction offshore wind, there was an 8% increase in the number of financial investors, including pension funds, in 2017, bringing their overall share of the market to almost 30%. Some familiar names exited the market, including Statkraft and Centrica, both of which completed sales of project shares (see figure 15).

In November 2017 Danish pension providers PKA and PFA purchased 50% of Ørsted’s Walney 3 project. This consolidated PKA’s presence in the market as the firm, which was 100 years old in 2017, had purchased a 25% share of the Burbo Bank Extension project in 2016 and in other European projects before that.

2017 was also the year of refinancing in Europe, some 50 banks now providing debt financing in the offshore wind sector, of which about 30 are taking construction risk. Over the last 12 months movement was also experienced in the number of financial investors, including pension funds, in 2017, bringing a very active 2017 (see facing page).

Firsts in 2017

- Legal and General made its first provision of debt finance into the sector with £300m of long-term debt support for PFA and PKA’s purchase of Walney 3. In doing so, the organisation recognised the importance of the offshore wind industry in providing clean energy and stimulating job growth in the UK.

- The privatisation of the Green Investment Bank completed in August 2017 following its purchase by Macquarie via a £2.3bn transaction. The Green Investment Bank became the Green Investment Group and as part of the transaction, a number of the investor’s offshore wind assets moved into a new offshore wind investment vehicle, which the Green Investment Group manage and hold a 25% stake in. Investors are long-term institutional investors: Macquarie European Infrastructure Fund 5 (MEIF5) and the Universities Superannuation Scheme (USS).

- For the first time, Danish developer Ørsted issued two €500m green bonds to fund offshore wind and coal-to-bio conversion projects. These were developed in alignment with the Green Bond Principles 2017 and were reviewed by the not-for-profit research institute Center for International Climate and Environmental Research (CICERO) which allocated them a “dark green shading”, the highest environmental grading a green bond issuer can receive.

- The Renewables Infrastructure Group (TRIG) made its first investment into the offshore wind sector through its purchase of a 14.7% indirect equity stake in Sheringham Shoal wind farm. The London listed investment company said the investment was consistent with its strategy of investing in long-term income-producing projects.

“We with this investment, we take yet another step into the renewable energy market which is actively contributing towards the green transition. We are proud to do so together with our business partner Ørsted, which is a front runner in this field and which has accumulated great expertise when it comes to establishing efficient offshore wind farms. The investment fits perfectly into our strategic work with focus on alternative investments that contribute to providing our customers with reliable and stable long-term returns.”

Allan Polack
Group CEO, PFA

"This is the sixth offshore wind farm PKA has invested in since 2011. We focus on this type of investment because we continue to see interesting opportunities in combining good returns to our members and at the same time supporting mitigation of climate changes. Investment in offshore wind farms has so far made double-digit returns and we are pleased to see this investment underlining our climate strategy. For us it is good business and common sense."

Peter Damgaard Jensen,
CEO, PKA
8 Wind farm ownership

Offshore wind ownership is still dominated by utility style owners, which represent 62% of the market. Traditionally these are firms with their roots in hydrocarbons but which have restructured out of these markets in recent years. This repurposing, combined with Centrica and Statkraft’s departure from the sector signals a maturing of the market. Over the 6 year period between 2011 and 2017, the number of financial investors in offshore wind grew by 350%.

The growing ownership stake of financial investors, especially pension providers, in the sector signals a maturing of the market. Over the 6 year period between 2011 and 2017, the number of financial investors in offshore wind grew by 350%.

2017 also saw the introduction of a new operations and maintenance (O&M) provider Excelco at Lynn and Inner Dowsing wind farms. This move represents a departure from the more typical O&M provision by a parent company/project shareholder, enabling projects to be wholly owned by financial investors. An example of this in action is Innogy’s provision of O&M services for North Hoyle, on behalf of financial investor/owner Greencoat. As ownership and project shares continue to change, there may be further opportunities for O&M services and contracting packages to develop further.

1 Statoil has since announced its planned name change to Equinor, reflecting its low carbon strategy.
Offshore Transmission Owner (OFTO) transactions

During 2017 no new transfers of OFTO assets occurred but the tender processes for several sites progressed, with the latest position shown in Figure 18. Transmission Capital Partners has the largest slice of the OFTO market with almost a third, followed by Blue Transmission and Equitix, Figure 19 provides an overview with additional detail in Figure 20.

Figure 20: OFTO ownership as at 31 December 2017

<table>
<thead>
<tr>
<th>Project</th>
<th>Company (Ownership)</th>
<th>Connection voltage</th>
<th>Interconnecting Operator</th>
<th>Operator/Substation Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrow OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>132 kV DNO</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
<tr>
<td>Greater Gabbard OFTO</td>
<td>100% Equitix</td>
<td>400 kV Transmission</td>
<td>Balfour Beatty Power & Transmission</td>
<td></td>
</tr>
<tr>
<td>Gunfleet Sands OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>132 kV DNO</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
<tr>
<td>Gwynt y Môr OFTO</td>
<td>60% Balfour Beatty</td>
<td>400 kV Transmission</td>
<td>Balfour Beatty Power & Transmission</td>
<td></td>
</tr>
<tr>
<td>Humber Gateway OFTO</td>
<td>40% Equitix</td>
<td>275 kV Transmission</td>
<td>Balfour Beatty Power & Transmission</td>
<td></td>
</tr>
<tr>
<td>Lincs OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>400 kV Transmission</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
<tr>
<td>London Array OFTO</td>
<td>100% Blue Transmission</td>
<td>400 kV Frontier Power</td>
<td>Frontier Power</td>
<td></td>
</tr>
<tr>
<td>Ormonde OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>132 kV DNO</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
<tr>
<td>Robin Rigg OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>132 kV DNO</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
<tr>
<td>Sheringham Shoal OFTO</td>
<td>100% Blue Transmission</td>
<td>132 kV DNO</td>
<td>Frontier Power</td>
<td></td>
</tr>
<tr>
<td>Thanet OFTO</td>
<td>80% Equitix</td>
<td>132 kV DNO</td>
<td>Balfour Beatty Power & Transmission</td>
<td></td>
</tr>
<tr>
<td>Walney 1 OFTO</td>
<td>100% Blue Transmission</td>
<td>132 kV Transmission</td>
<td>RES</td>
<td></td>
</tr>
<tr>
<td>Walney 2 OFTO</td>
<td>100% Blue Transmission</td>
<td>132 kV DNO</td>
<td>RES</td>
<td></td>
</tr>
<tr>
<td>West of Duddon Sands OFTO</td>
<td>50% Dalmore Capital</td>
<td>400 kV Transmission</td>
<td>Frontier Power/Distribution</td>
<td></td>
</tr>
<tr>
<td>Westermost Rough OFTO</td>
<td>100% Transmission Capital Partners</td>
<td>275 kV Transmission</td>
<td>Transmission Capital Services</td>
<td></td>
</tr>
</tbody>
</table>

Transmission system availability for OFTOs is published by National Grid each financial year. 2017-18 data is not expected to be published until July 2018, so the information in this section covers the period April 2016 to March 2017.

Annual Availability

Operators of the offshore transmission systems are incentivised through the regulatory framework to provide prescribed minimum levels of availability. The default for this is 98%, with specific targets established for each OFTO.

National Grid collates availability data for each OFTO annually – this includes all outages that originate on an OFTO’s system but excludes outages that originate elsewhere, for example on a wind farm generator or DNO. The OFTO availability incentive then adjusts the reported outage data to calculate incentivised performance for each OFTO.

In 2016/17, average OFTO availability was 99.36%, significantly higher than the previous year (95.99%) with Figure 22 showing a general trend of increasing availability. The only OFTO not to attain 98% availability was Thanet which was impacted by repairs to Export Cable 2 and the replacement of a transformer radiator in 2016. Information is available in the National Grid’s National Electricity Transmission System Performance Report. Transmission Capital Partners made a pre-emptive export cable repair at Ormonde during 2017. Whilst the impact will not be shown until latest National Grid figures are published, it is encouraging to industry and investors to see a proactive approach to management of transmission assets in order to minimize losses.

The Offshore Wind Programme Board (OWPB) Grid Group commissioned an assessment of export cable reliability in 2017, with the aim to better understand the causes of cable failures connecting offshore wind farms, as such failures had increased in frequency at that time. All OFTOs and many offshore wind developers input to the project1 and further work is being progressed through the OWPB Grid Group.

The Global Offshore Wind Health and Safety Organisation (G+) continues to create and support health and safety best practice throughout the offshore wind industry. During 2017, the focus has been to strengthen links to stakeholder organisations in order to bring more international best practice and learnings into the G+ and expand its influence. The G+ has introduced a new level of Associate Membership to involve contractors, O&M providers, non-operating owners and non-lead operators/developers, which has already seen a number of new members join the G+.

Drawing on applicable safety culture guidance from other industries, for example construction and oil and gas, is helping G+ members identify potential risk areas and streamline solutions. The G+ is now a member of the cross-industry collaboration with other key stakeholders and improving our work programme and safety performance.

Sharing experience and knowledge: Safe decommissioning of suction buckets without divers

In May 2017 Forewind commenced planning for the decommissioning of its two meteorological masts, situated on the consented Doggerbank Wind Farm. Each meteorological mast stood at a height of 110m above mean sea level and was mounted on a suction bucket structure of 50m in length. The larger of the two structures weighed 768t, meaning that there was potential for clay deposits to have built up on the suction bucket structures. If present, this would have impacted the lifting plan.

Robust planning for the decommissioning was key to the success and safety of the operation, as well as to ensuring that the seabed environment was not negatively impacted. Forewind and its contractors undertook months of technical reviews and scenario planning to ensure that the entire process was a success and required no repetition or remedial work.

Both mast structures were removed successfully in September 2017 using the Seafox 5 vessel, a process which involved the depressurisation of the bucket components using pump hoses. These were connected by a remotely operated vehicle (ROV), avoiding the need for divers. The incremental depressurisation process was monitored closely from the vessel using the ROV to confirm the integrity of the buckled components was maintained. The bucket skids started to dislocate from the seabed at just over 1 bar whereupon the lift continued and was, again, closely monitored by ROV until the unit was visible above the sea.

Once the masts were secured to the vessel, Seafox 5 set sail for Flushing, Holland where the ROV was used to confirm the integrity of the bucket structures, before additional data was added to the system.

Knowledge

The Crown Estate unlocks value in the seabed by enabling and promoting its sustainable development. It is committed to the success of its customers and works across a range of topics to help promote the sustainable development of the seabed. Highlighted below are some of the initiatives and collaborations between The Crown Estate and its customers:

Offshore wind electricity map

The Crown Estate’s interactive wind map, which received record views last year, refreshes hourly to estimate the total electricity being generated by offshore wind farms in the UK. It is unique in separating offshore wind from a total wind generation figure and includes estimates of the production for embedded generators not directly supplying the National Grid.

The map also gives useful facts, including a live comparison with generation from other fuel types and total generation figures for offshore wind for the previous month as well as the year to date.

Marine Data Exchange

The Marine Data Exchange (MDE) was created to store, manage and share offshore survey data collected by developers/operators throughout the lifetime of a project. In 2017, 160 new surveys were delivered by The Crown Estate’s offshore renewable and marine aggregate customers, taking the total number of surveys held on the MDE to over 2,500. Of that data, 46% is publicly available, including the Cumulative Ornithological Collision Risk Database. The Crown Estate’s offshore wind customers and their contractors are the biggest users of the data and throughout 2017 more data will be added to the system.

Seabed Morphology Report

This report, prepared by University College London, presents a workflow for the evaluation of seabed mobility from sedimentary features for a range of scales from the regional to more local areas of interest. These include initial assessment of potential seabed mobility, broad-scale bathymetric visualisation, and analysis of seabed morphological change at decadal to century scales. Outputs of such assessments should further inform initial site selection as well as the risk profile for operating assets in such regions.

You may also be interested in...